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A GENERIC BILEVEL FORMALISM FOR UNIFYING 
AND EXTENDING MODEL REDUCTION METHODS 

1.     INTRODUCTION 

In its broadest sense, model reduction methods synthesize, from one model, a new "reduced" model 
whose response-predictions coincide with that of the original model for a specified subset of the original 
scope of stimuli. Within this restricted scope of admissible stimuli driving the response, the synthesized 
model can be used in place of the original model. The benefit usually corresponding to this is a considerable 
reduction in overall computational effort. This is satisfactory if the modeler/analyst is interested only in the 
model's response to this subset of admissible stimuli. The problem remains, however, that outside of this re- 
stricted scope of admissible stimuli, the synthesized model's predictions typically compare poorly with that 
of the original model. A remedy to this dramatic dropoff in accuracy is to somehow approximate this "resid- 
ual" part of the model in a manner that is consistent with the reduced-model synthesized and, at the same 
time, is complementary to the model reduction method. This results in a hybrid approximation to the origi- 
nal model. "Consistent" here means that the scope over which the reduced model is faithful to the original 
model is fully preserved when it is combined with the other approximation, conjugate to the model reduction 
method, to form the hybrid. "Complementary" here means that the conjugate approximation be an adequate 
one over at least the set of stimuli not admissible to the corresponding model reduction method. A good 
role model for the combination of complementary approximations into a self-consistent, efficient hybrid is 
that of multigrid methods [1,2]. One approximation is effective at eliminating oscillatory error components 
(on a fine grid) and the other is effective at eliminating smooth error components (on a coarse grid). In this 
paper, an abstract, algebraic bilevel version of this approach is developed that provides a general means of 
consistently combining model reduction methods with other approximations. The generic formalism en- 
compasses at least three broad classes of model reduction methods: smoothing/homogenization, reduced 
basis, and substructuring methods. A particular model reduction method operates at one "level" (the coarse 
grid analogue) and some conjugate approximation (of the original model response) operates at the other 
"level" (the fine grid analogue). A generic continuation approach is proposed and developed in this paper 
as a class of conjugate approximations. This choice is seen to unify and generalize several successful ap- 
proaches to extending the utility of reduced basis methods. 

One important class of model reduction methods applies to the modeling of coupled-multiscale phenom- 
ena for which the differences in scale are significant. A prominant example of this would be a structural- 
component model of a material that possess an intricate spatial heterogeneity of a length scale small with 
respect to structural dimensions but large with respect to atomic dimensions. Homogenization and smooth- 
ing methods of model reduction were developed for these and similar such cases. Both methods refer to 
the process of mathematically synthesizing a macroscale (usually effective single-phase constitutive) model 
from a given mesoscale/microscale model such that the predictions of each coincide on the macroscale. 
Methods designed for periodic media are usually referred to as homogenization methods in the literature. 

Manuscript approved September 30, 1999. 
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The best known and most widely used is the asymptotic approach [3, 4, 5, 6, 7], which is based on special- 
izing the derivative-expansion version Ref [8, pp. 230-232] of the multiple scales perturbation method to 
a biscale expansion in the spatial variables. Methods of smoothing (see Refs. [9] and [10, p. 16]), which 
are designed for statistically homogeneous random media, have several variants, including "self-consistent" 
methods [10, 11] and methods that bound [10, 12] the constitutive parameter values through the use of 
variational principles. Fishman and McCoy [13] showed that both homogenization and smoothing meth- 
ods can be united under a single projection operator framework. Similar projection techniques have been 
used previously to deduce the influence of one scale upon another in other areas, such as neutron transport 
Refs. [14, pp. 37, 193-194, and 236-250] and nonequilibrium statistical mechanics [15]. An example of a 
type of heterogeneity that does not fit either of the usually-assumed periodic or random material models is 
found in Steinberg and McCoy [16]. They consider the case of fluid-loaded structures for which the hetero- 
geneous regions, each of limited spatial extent on the macroscale, are irregularly distributed. The enabling 
assumption of the projection technique [13,16] underlying both homogenization and smoothing methods is 
that the fluctuation-scale-response is excited solely by its coupling to the macroscale response; any external 
stimulation of the system is taken to occur at the macroscale only. 

Multiscale systems are also represented by models with a finite number of degrees-of-freedom (DOF). 
If properly chosen, a given subset of the model's DOF can represent a corresponding scale of the model, 
with fewer DOF usually required the larger the scale. Conventional multigrid methods can be used to model 
these scales and their coupling for models consisting of sets of algebraic equations. Another important class 
of fmite-degree-of-freedom mathematical models consists of coupled sets of ordinary differential equations, 
a common source of such models being spatial discretization of a physical system via finite-element meth- 
ods (FEMs) or finite-difference methods. The number of DOF of such models is often large, making their 
response-prediction computationally expensive. Two overlapping classes of DOF reduction methods appro- 
priate to such systems are reduced basis methods, which use a Rayleigh-Ritz approximation with respect to 
a reduced set of generalized coordinates, and "substructuring" methods, for which the DOF of the synthe- 
sized reduced-model consists of a chosen subset of the DOF of the original model. The admissible stimuli 
for the reduced basis method consists of the span of a small number of basis vectors (the "reduced basis"), 
the number being small compared with the total number of DOF if the method is to be efficient. In turn, 
the usual enabling assumption for the substructuring methods is that the eliminated DOF, that is, those not 
retained in the reduced-model (and typically composing the "substructures"), cannot be externally stimu- 
lated (loaded). A partial summary of substructuring methods is given by Abdelhamid [17]. The first and 
still very popular such method is that due to Guyan [18]. Flippen [19] derived a number of such methods 
from a general time-derivative series solution [20]. The Modal Reduction method [21, 22, 23], popular for 
the synthesis of Test-Analysis-Models (TAMs) via elimination of (almost) all but the test-sensor-associated 
DOF, is an adaptation of modal reduced basis methods to substructuring. 

For reduced basis methods, the reduced basis sets consist mainly of either Lanczos/Ritz, modal, or 
solution-path-derivative vectors. As pointed out by Nour-Omid and Clough (Ref. [24,'p. 566]), Ritz vector 
methods [25], as usually implemented, are essentially Lanczos methods. Lanczos methods are applicable to 
models constrained to loads contained within the span of a small number of fixed vectors. These fixed load- 
basis vectors are used, in turn, to construct a reduced basis spanning the Krylov subspace associated with 
the method. The Lanczos method is usually discussed in terms of a second-order formulation, but it also 
has a first-order formulation [26] for nonproportional damping, as well as block [27], modal-hybrid [28], 
and other variants. Noting the analogy of their method to those based on Krylov subspaces (in particular, 
those of Arnoldi and Lanczos), Häggblad and Eriksson [29] recognized that efficient, "generalized Krylov" 
subspace descriptions can be generated as recursive relations from series solutions of the governing equa- 
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tions. They take a physical approach and derive advanced methods of this type from series in which "each 
component is successively computed by balancing the inertia forces from the previous component in the se- 
ries." This prescription for generating their series is model-specific to mechanics. In particular, they do not 
explicitly identify an underlying generic perturbation or continuation method associated with any of their 
series. The application of modal reduced basis methods for linear problems is commonplace. Its applica- 
tion has been extended [30] to nonlinear structural dynamics problems as well. Continuation-based reduced 
basis methods, as summarized mathematically by Rheinboldt (Ref. [31, pp. 80-86]) for example, seem to 
have a growing history of practical success with respect to some nonlinear problems (see Noor [32], Noor 
and Whitworth (Ref. [33, p. 915]), Noor (Ref. [34, p. 958]), and Noor and Peters [35], for example). The 
solution and its path derivatives at a point on the continuation path are used as a Rayleigh-Ritz reduced basis. 

Kammer [21] recognized the need for and constructed a hybrid extension to modal reduction for build- 
ing robust TAMs. The force derivative method is another example of a model reduction hybrid, in this case 
for extending modal reduced basis approximations. With linear FEM models of mechanical systems as a 
benchmark, comparisons [36, 37, 38] between several reduced basis methods based on computed responses 
of the resulting reduced dynamical models, seem to favor the force-derivative [37, 39, 38] and the (closely 
related) Lanczos [24, 27, 26, 40] methods. This is evidence supporting the utility of hybrid extensions to 
model reduction methods. The force-derivative method encompasses [39, 38] the older mode-displacement 
and mode-acceleration methods [41, 42] as zeroth and first-order submethods, respectively. It is essen- 
tially a modal basis method that is systematically corrected by terms containing residual mode information. 
(The chosen modal basis vectors are the target modes whose span contains the reduced model's response.) 
Its importance is underscored by the fact that it provides both a foundation and extension to the popular 
Craig-Bampton [43] version of component mode synthesis [44], as shown by Suarez and Singh [45]. The 
conventional version of the force derivative method is a convolution integral formulation [39, 38], from 
which higher order corrections are derived via repeated integration by parts of the integral. This integration- 
by-parts development of the series is apparently serendipitous; a direct systematic development in terms 
of a generic perturbation methodology is neither mentioned nor used as an alternative. As shown later in 
this paper, the force derivative and Lanczos methods are closely related. For the case of generic undamped 
mechanical FEM models, if the force derivative method is constrained to loads within the span of a small 
number of fixed vectors (a Lanczos requirement), each correction term of the method then reduces to a 
scalar-multiple of a basis vector for the (Lanczos-associated) Krylov subspace. 

Frequency window methods form another class of hybrid methods, their original intention essentially 
being an extension to modal methods. They are very efficient for extensive time-harmonic re-analysis. In 
structural acoustics, for example, fine frequency sweeps may be needed to build transient responses (Ref [46, 
p. 251]) using fast Fourier transforms. Igusa and Achenbach et al. [47, 48, 46] have developed frequency 
window methods for which substructure attachments are coupled to a main structure by Lagrange multipli- 
ers. Its efficiency derives from its use of two complementary approximations, a frequency-response repre- 
sentation of the resonances by simple analytical forms in conjunction with frequency-interpolation over the 
nonresonance part of the response within a "window." In Ref. [46], for example, the modes of a fluid-loaded 
shell are used to analyze the response of the same shell with internal substructures. The eigensolution is 
"subtracted out" of the fluid-shell response, leaving an interpolation over the "smooth," nonresonance part 
of the fluid-shell response within a window. An analytical expression is used to represent the resonant part 
of the fluid-shell response in terms of the the fluid-shell eigenvalues and eigenvectors, which are obtained by 
independent, external means. Flippen [49] developed a frequency window version of substructuring meth- 
ods for degree-of-freedom reduction. Ingel et al. [50] extended this into a finite-element environment. 
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The formalism of this paper attempts to encompass these currently accepted, in-use hybrid methods as 
special limiting cases while mathematically extending their foundation to a more general model reduction 
setting. In this context, specific computational implementations and applications are beyond the scope of 
this report. Feedback from such computational experience is ultimately necessary for refining an algoritm 
and increasing its efficiency. Therefore, the practical envelope-of-utility of any particular algorithm arising 
from this formalism cannot be fully evaluated here. 

2.     MATHEMATICAL FORMALISM 

Let the mathematical model to be considered in this report be generically represented by 

Lu = f, (2.1) 

where L is the system operator, u is the system response, and / is the system stimulus (loads, sources, 
etc.) driving the system. The formal, generic nature of the model description (2.1) allows for the derivation 
of results of a general nature and utility. It should be noted that (2.1) is not necessarily in a state-space 
formulation. Although some of the results that follow are not new, they are included for completeness. In 
addition, the development that follows carries with it the implicit caveat that the ranges and domains of 
the appropriate operators are such that the various operator compositions indicated are well-defined. As an 
algebraic notation, juxtapositioning of operators in this report denotes their compositioning as mappings. 
The additional notation 7v(4) = {range of .4}, V(A) = {domain of 4}, and A'{A) = {nullspace of 4} for 
generic operator A will also be used. 

2.1    Generalized Inverse Theory for Model Reduction 

The typical goal of any particular model reduction method is to provide an accurate approximation to L~l 

over the "relevant" subsets of possible u's and /'s of (2.1), that is, over a restricted domain and range for L. 
In this report, this approximation to L~l is made generic to all such model reduction methods and system 
models (2.1) through the concept of an "outer generalized inverse" of L. 

Definition 1 For a given operator L, an outer generalized inverse of L, denoted by L1, satisfies 

LlLLl = L1. (2.2) 

Similarly, an "inner generalized inverse" of L, denoted by Ln, satisfies 

LLHL = L. (2.3) 

The ordinary inverse L~l, when it exists, is both an inner and outer generalized inverse. This report is 
exclusively concerned with outer generalized inverses. The terminology is borrowed from the theory of ma- 
trices (Ref. [51, pp. 428^132]), for which a matrix generalized inverse satifying both (2.2) and (2.3) always 
exists for any given matrix L. In a more general operator setting for which L is not necessarily a matrix, 
one might satisfy one of either (2.2) or (2.3) without satisfying the other. The distinction between which of 
(2.2) and (2.3) is satisfied is then necessary. The terms "inner" and "outer" are used to make this distinction 
for lack of a known precedence regarding terminology. As in the matrix case, generalized inverses in this 
more general setting are not, in general, unique. The following theorem also carries over from the matrix 
case to the general operator setting. 
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Theorem 1 The operators LL1 and L1L are each idempotent. If L is bijective, so that L~x exists, then 

L-1    =    L' + (I - L1L)L~X (2.4) 

L~l    =    LI + L~l(I-LLI) (2.5) 

are identities expressing L ~l in terms of Ll and a "residual" term containing one of the idempotent operators 

(/- L]L) or (/ - LL1). 

The proof that LL1 and L1 L are each idempotent follows directly from (2.2). (An idempotent A satisfies 
A2 = A A = A.) The proof of (2.4) and (2.5) follows from the decompositons of the identity given by 

/   =    LlL + {I-LlL) (2.6) 

/   =    LL1 +{I-LLl), (2.7) 

respectively. In (2.6) each element of V (L) is uniquely decomposed into the sum of a component in 7v (L TL) 
and a component in 7v(7 - LlL). Similarly, in (2.7) each element of U{L) is uniquely decomposed into 
the sum of a component in TZ (L L !) and a component in 7v (I - L L1). If one usesL7asan approximation 
to L"1 in (2.4) or (2.5) by neglecting the residual term (for now), one is effectively computing a reduced set 
of responses 7v(I7I) for (2.1) for a reduced set of stimuli TZ {LL1). This can be more easily seen by use of 

the identities 

L1   =   L~l{LLl) (2.8) 

L1   =    (LIL)L~l. (2.9) 

The first identity shows that filtering the stimuli in TZ(L) by LL1 and then solving (2.1) is equivalent to 
using L1 directly. Similarly, the second identity shows that filtering the response (obtained from solving 

(2.1)) by L1L is also equivalent to using L1 directly. 

To make use of outer generalized inverses as model reduction approximations, one must be able to con- 
struct them so that either TZ{LLr), TZ(LIL),or both, are adjusted to correspond to the set of relevant stim- 
uli, responses, or both, respectively. The following theorem gives conditions for predetermining TZiLL1), 

TZ{LIL),or both for a certain class of outer generalized inverses. 

Theorem 2 Given a system operator L for system model (2.1), let the relevant stimuli and response subsets 
be given by 1Z{Pr) C TZ{L) and TZ{Pd) C V(L), respectively, for the linear idempotent operators Pr and 
Pj. Define the effective version of L as 

Leff = PrLPd. (2.10) 

If L1' is defined by 
LI* = PdLtff

IPr. (2.11) 

then L1" is an outer generalized inverse of L and 

X{PrL)    C    TZ{I-LJXL). (2.12) 

For a given / in (2.1), define a model reduction approximation to the response as •(/. = L1" f for which Ltjj 

in (2.11) satisfies either 
PjLtf/Ltfj = P,. (2.13) 

or 
LeffL,ff

rPr = Pr. (2.14) 

or both. 
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• If Lf.fj1 satisfies (2.13) then 

KLtff1 satisfies (2.14) then 

KiL^L)    = U(Pd) 

= Af{I-LT*L) (2.15) 

L^LPj    = Pd (2.16) 

A'(Ie/./)    = N{Pd). (2.17) 

TZiLL1")    = H(Pr) 

= Mil-LL1*) (2.18) 

PTLÜ*    = Pr (2.19) 

Af(PrL)   = TZil-L^'L). (2.20) 

• If Lzff1 satisfies both (2.13) and (2.14), then L1" is unique. 

• If Pr and Pd satisfy 

and Leff
I satisfies (2.13), then 

and L^JJ
1
 satisfies (2.14) as well. 

If P,. and P,j satisfy 

and Lejj1 satisfies (2.14), then 

PrL(I-Pd) = 0 (2.21) 

LIXL = Pd (2.22) 

(I-Pr)LPd = 0 (2.23) 

LL1* = Pr. (2.24) 

If, in addition, Af(L) = {0} then Le// satisfies (2.13) as well. 

The subscripts "r" and "d" on Pr and Pd denote range and domain (of L), respectively. Appendix A con- 
tains the proof of Theorem 2. Theorem 2 reduces the model reduction process to finding a Lejj

! satisfying 
either (2.13) to obtain H{LrL) = TZ(Pd) of (2.15), (2.14) to obtain lZ{LLr*) = TZ(Pr) of (2.18), or both. 
The L,jj approximation of L given by (2.10) is essentially a generalized Petrov (or Galerkin) method for 
arbitrary (not necessarily of finite dimension) subspaces. 

A primary advantage of satisfying either of the constraints (2.21) or (2.23) is that L1* f may then be an 
exact solution to (2.1). In the case for which (2.22) is valid, if u = L1" f, then Pd u = L1" Lu = L^LL1*/ = 
Lrf = u and Lr(Lu - /) = Pdu - L

1*f = Pdu - u = 0, so that {Lu - f) £ A'(Z/*). In the case for 
which (2.24) is valid, / = Prf = LL1" f = Lu shows that u = L1* f is an exact solution to (2.1) for all / 
satisfying Prf = f. 

The constraint (2.23) on Pr and Pd for model reduction is not new. In fact, PrLPd = LPd corresponds 
exactly with the constraint (6) of (Ref. [52, p. 126]) when making the associations Pr ->• P and Pd -> QP, 
where P and 9.P are the notations of (Ref. [52]). The constraint (3) of (Ref. [52, p. 125]) on stimuli ./' 
justifies the association Pr -^ P. The PrLPd = LPd constraint, in conjunction with (2.14), is seen here to 
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arise naturally as a means of simultaneously obtaining both (2.24) and TZ(LT*'L) = H{Pd) of (2.15) in the 
case of bijective L. A similar advantage is acrued by adherence to (2.13). 

The following corollary of Theorem 2 provides alternatives to (2.4) and (2.5) as decompositions of I-1 

into L1' and a residual term. 

Corollary 1 If, in Theorem 2, L is bijective then (2.13) implies 

L-1 = L1" + (/ - LrL)(I - Pd)L~l (2.25) 

and (2.14) implies 
L~l = LJ* + L-1(I-Pr)(I-LL1*). (2.26) 

Proof: The relation (2.13) implies (2.16), which implies (/ - L1''L)Pd = 0, which in turn implies (/ - 
L^Dil - Pd) = {I - LrL), and (2.25) follows from (2.4). The relation (2.14) implies (2.19), which 
implies Pr{I - LL1*) = 0, which in turn implies (/ - Pr){I - LLr) = (J - LL1*), and (2.26) follows 

from (2.5). 

2.2    A Bilevel Formalism 

Taking L1 -» L1* in (2.4) and operating upon /, with L'1 f » uJ+1 on the left-hand side and L~l f % uj 

on the right-hand side, suggests the iteration scheme 

UJ+1 = V f+(I-L> L)u j- 

The iteration error can be found from taking G —> L1* in the following theorem, which is well-known in 

matrix iterative analysis. 

Theorem 3 Let 

uj+i    =   Gf + {I - GL)uj 

=   vj+G{f-Luj) (2.27) 

represent an iteration scheme for u.j for generic G. If the exact error in Uj is given by e3 = u - u:i for 

■u = L~l f, then 
ej+i = (I-GL)6j. (2.28) 

Proof: Equation (2.27) leads to 

«j+i    = Gf+{I-GL)uj 

= GL(L-lf) + Uj -GLuj 

= GLu + UJ — GLiij 

= GL(u - it j) + iij 

= GLi j + iij. 



L.D. Flippen, Jr. 

u0   =   0 

«,■+1    =    L~\f+(I- - L-lL)uj 

uj+1    =   I7*/+(/- - L!*L)uJ+l 

so that 

ej+i    = « - «j+i 

= « — u.j — GLej 

= e}■ — GLej 

= (I-GL)er 

As (7 - L1 7) is idempotent, its norm is never less than one, and the iteration scheme does not improve 
the error with each iteration. As in the multigrid case (see Lemma 2.1 of [1, p. 23]), one needs to combine 
L1 with another approximation for L~l. With the conjugate approximation for L~l denoted by L~l, the 
iterative scheme 

(2.29) 

(2.30) 

(2.31) 

for j' > 0, for which the error satisfies 

ej+1 = (I-LI"L)(I-L-1L)ej, 

converges if the norm of (7 - L~l L) is sufficiently small. One would expect that if Z_1 is a "good enough" 
approximation for L~1, so that L'1L is "close enough" to 7, then this norm would be small. If 7_1, is a 
very good approximation for L"1, then one iteration should be a sufficient approximation, so that j = 0 in 
(2.31) leads to 

I'1    sa    7/* + (7-7/*7)Z-1 (2.32) 

upon taking ux ss L~l f on the left-hand side and dropping / (because / is arbitrary). Equation (2.32), or 
some variant of it based on (2.25) or (2.26), can form the basis of some noniterative model reduction hybrid 
methods. 

The iteration scheme of (2.30) and (2.31) is analogous to a bilevel multigrid method [1,2], with (2.30) 
analogous to the fine-grid-smoothing step and (2.31) analogous to the coarse-grid-correction step. The 
operator (7 — L1 L) is analogous to the coarse-grid-correction matrix. This suggests possible variants 
of (2.30) and (2.31), such as using multiple iterates of (2.30) both before and after the (2.31) iterate, as 
is usually the case in the conventional bigrid method. Even at this abstract level, the algebraic essence 
of the bigrid method is preserved in that (2.12) and N{I - L1*L) = 'R(Pd) of (2.15) are analogous to 
X{llhAh) C TZ(CG) (implied) and A'(CG') = H(I^h), respectively, of Briggs [2, p. 79]. (Both (2.13) and 
(2.14) are satisfied in the conventional bi-grid method, as will be seen later.) 

2.3    Generic Perturbational Conjugate Approximation 

A generic continuation approach 

7-] =r(6)-1le = o->i (2-33) 

for T{ 1) = L will now be developed as the conjugate approximation of L"1 for use in (2.30) or (2.32). As 
a brief synopsis, in continuation methods one embeds the problem to be solved, denoted generically by 

T(e)u = q(I). 
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into a continuum of problems 
T(()u = q(e). 

linked by a parameter, in this case e. The problem to be solved is placed at € = e, where e is usually 
normalized so that ? = 1, and a related problem 

T(0)u = q(0). 

which is comparatively easy to solve, is placed at t — 0. There are a number of ways in which the computed 
continuation from t: = 0 to e = I for the generic case can be accomplished [31, 53]. One approach is to carry 
out a perturbation expansion of the embedded (-problem about e = 0, carry a sufficient number of terms in 
the expansion for accuracy, and evaluate the resulting expansion at e = I. This is an old, widely used version 
of continuation (Ref. [54, p. 245]), and it is the version that is used in this report (with ? = 1). 

If the e expansion of T(e) is finite for generic operator T, then an explicit, generic perturbational expan- 
sion for T(e)-1 is given by the following two theorems. 

Theorem 4 Let the operator T have the finite expansion 

T(() = J2^'TJ (2.34) 

in the scalar parameter e for a given nonnegative integer J. The linear component operators Tj are each 
assumed to be independent of e, and To-1 is assumed to exist. Let the operators TR and TL each have the 
finite expansions 

A7 

r6(e) = jVr6j (2.35) 
3=0 

for a given nonnegative integer N, b —> R or L, where the component operators rR
; and TLj are each 

assumed to be independent of e. Define the right component operators QRj by the recursion relation 

T0Q J = HNJT J £ HjkTkrf 
./,-=! 

(2.36) 

and the left component operators QLj by the recursion relation 

QL,T0 = HXjr
l 

j 

.k=l 

£ Hjkn
Lj-kTk (2.37) 

where the discrete step function Hjk is defined by 

Hjk 
Iifk<j 
Oif k > j, 

(2.38) 

and where / is the identity operator and 0 is the zero operator. The operators 

M 
(2.39) 
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and 
M 

nL(<) = Y,t3nLj- (2.40) 

for a given nonnegative integer M, satisfy 

and 

respectively. 

mR - rR 

QLT - T 

Max(A".A/+J) 

L 
=iu+i 

Max(N,M+J) 

j=M+l 

Y^ HjkHM.j-kTkttRj-k 
\k=o I 

2_, HjkH.M,j-k& j-kTk 

HN]r R . 

HNjT j 

u—0 

(2.41) 

(2.42) 

Appendix B provides the proof. The above result has utility, for example, when the right-hand sides of 
(2.41) and (2.42) are 0{eM+1). In this case, (2.41) and (2.42) take the practical forms 

mR - rR 

QLT - rL 
0(eM+1) 

(2.43) 

(2.44) 

It is assumed that even if the perturbation is not analytical, the results still have value in terms of an asymp- 
totic series. The "of the order of" Landau symbol O (Ref. [8, p. 8]) is defined by 

A( cV) } <—> limf_H) 
A(c) 

c>< <    oo 

for generic A of a normed space with given norm 11 11 and a given nonnegative integer k. Sufficient conditions 
under which QL and QR coincide are provided by the following theorem. (The question as to whether these 
conditions are also necessary will not be pursued here.) 

Theorem 5 Under the hypothesis of Theorem 4 for N = 0, assume that (2.36) and (2.37) reduce to 

and 

ft    m = H0mA - 2_, HmkATkQ    m-k 
k=\ 

ft   m  = HomA - 2_, H-nik-Q    m-k.TkA. 
k=l 

(2.45) 

(2.46) 

respectively, for some operator .4 = T0  
1FR

0 = rL
0T0  

1. For each m > 0, the QR
m component of (2.45) 

and the corresponding ftLm component of (2.46) are equal. 

The proof is deferred to Appendix C. 

2.3.1    Perturbational Operator Inversion 

An important special case of the previous section is that for which .¥ = 0 and TR = TL 

identity operator, so that (2.36) and (2.37) reduce to 
r0 = /,the 

ft    m  — H0mT0        —2_^Hmk-To      Tkü    m- (2.47) 
A-=l 
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and 
j 

VL
m = Hon-Jo'1 - £ HmkQL

m.kTkT0-
1. (2.48) 

A—1 

respectively, and (2.43) and (2.44) together imply 

Q = T(()-1 + 0{(M+1). (2.49) 

One would expect this to be the case for T{e) bounded-holomorphic (Ref. [55, pp. 366,419]), for example. 
The superscripts R and L have been dropped from the Q in (2.49) because in this case one has QL = QB, 
as supported by the following corollary to Theorem 5. 

Corollary 2 Under the hypothesis of Theorem 5 for TR = YL = /, so that A = To""1, assume that (2.41) and 
(2.42) imply (2.43) and (2.44), respectively. For each j, the QR

:i component of (2.47) and the corresponding 
QL j component of (2.48) are equal, so that (2.49) and 

M 

T(c)-1 = J2 f-]Qj + 0{eM+1) (2.50) 
3=0 

are justified for 0, component operators recursively defined by either (2.47) or (2.48). 

Corollary 2 shows that the components given by (2.47) can be thought of as those of the t-expansion of 
T~l. The only inversion used in computing T (() ~   for all e is that for T0. 

The results (2.47) can be tested against known results for generic perturbational operator inversions. 
The J = 1 subcase of (2.50), for which (2.47) reduces to 

ft0    =    To"1 (2-51) 
fim    =    [-ro^Ti^-ifarm^l, (2.52) 

is equivalent to the well-known Neumann series (Ref. [55, pp. 30, 32]). To see this, take J = 1 in (2.34) to 
get 

T   =    To + eTi 

=    T0 J + eTo-1^] 

=    To^-ef-To-1^)], 

so that 

r-> = I-e(-T0-
lTi)\     To"1. (2.53) 

The Neumann series results by the use of the "binomial" operator expansion 

[/-e.4]-1 = ]T emAm (2.54) 
?n=0 

for bounded linear operators .4 (Ref. [56, p. 375]). (The expansion (2.54) is convergent when the magni- 
tude of ( is less than the inverse of the norm of .4, assuming a Banach space setting.) Using (2.54) with 
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A =-T0-
1Tl in (2.53) leads to 

T-i E e'r' [-^li T() 

E< 
?7?=0 

-To-'T, Jo 

Ef",fim, 
m = 0 

where 
nm = ■i    "'    1 

This expression for Qm is equivalent to (2.51) and (2.52). 

For the J = 2 subcase of (2.50), (2.47) leads to 

To"1 Q0    =    i0 

om  =  -rtr
1[T1am_1 + T2fi.m_2] 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

for m > 2. This agrees with the first few terms for T  1 given by Kato in (6.16) of (Ref. [55, pp. 420]). 
Note that (2.57) through (2.59) reduce to (2.51) and (2.52) for T2 = 0, as it should. 

2.3.2    Outline of Procedure for Applying Formalism 

To complete the development of the generic continuation (2.33) for T(l) = L as the conjugate approxima- 
tion of L~l, take e —> 1 in (2.50) to get 

T(e) If = 0->l 

M 

j=o 

(2.60) 

As (2.47) or (2.48) are equally valid by Corollary 2, (2.47) will be used for defmiteness. With the superscript 
R dropped from P.R in (2.47) because QL = QR, the Qj's in (2.60) are recursively given by 

Q-m. = H0mTo        - 22 HmkTo      T);Q.nl-k. (2.61) 

The steps to implement the formalism of this paper using this generic perturbation as the conjugate approx- 
imation are summarized as: 

• Construct the linear idempotent operators Pr and Prj such that the relevant stimuli and response sub- 
sets are given by 7v (Pr) C 7v (L) and 7v (P,i) C V (L), respectively, where L is the system operator for 
the system model (2.1). It is advantageous, but more work, to fix one of either Pr or P,j and determine 
the other from either (2.21) or (2.23). 

• For Lejf given by (2.10), determine L(jf
J such that it satisfies either (2.13), (2.14), or both. Construct 

L1" from this Lejf
l using (2.11). 

• Embed L in a t-continuation Tie) such that 
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- Xb-1 exists 

- To-1 is much more easily computed than L~l 

- T(l) = L,and 

- T has the expansion (2.34) for some J. 

• The continuation should complement the model reduction approximation L1 in that it should lead to 
a reasonably accurate approximation to L~l outside of 'R(Pr) and TZ{Pd). 

• The conjugate approximation I-1 is determined by (2.33) and (2.60) for fi;/'s recursively given by 
(2.61) for some chosen value of M. 

• The solution v to (2.1) is constructed either from u = L~l f with Z,-1 approximated by (2.32), or 
iteratively using (2.29) through (2.31) (or some variant). There will probably be a tradeoff between 
M and the number of inner iterations of (2.30); accuracy may require many iterations of (2.30) per 
evaluation of (2.31) for small M, or only one iteration of (2.30) per evaluation of (2.31) for large 
enough j\l. 

The next section shows that there are several important classes of model reduction methods for which the 
second step, in which Lfj/ is determined to satisfy either (2.13), (2.14), or both, is already "worked out." 
The operator ie//

7 is constructed from Lrej~
l, where Lreci is a "reduced" version of L. The construction 

of Le f f
I from A-ed-1 and the specific definition of Lrej varies from one class of model reduction method 

to another. For these cases, the bulk of the effort in the second step above reduces to the computational work 
of obtaining/applying Lred~l ■ 

3.     CLASSES OF METHODS ENCOMPASSED 

The formalism of this report encompasses the reduced basis, substructuring, and smoothing/homogenization 
methods of model reduction. To maintain as general a setting as possible for the development of the reduced 
basis and substructuring methods, L of (2.1) is taken to be a square system matrix with operator compo- 
nents, as in Ref. [20]. In keeping with this, the definition of the multiplication of two arbitrary matrices is 
generalized to 

{AB)ij = Y,Aik°Bkj (3-1) 
A- 

for compatible matrices A and B, where the symbol o denotes mapping composition, that is, An-oBk] 
applied to some function g is interpreted as Alk {Bkj (g)). The associative and distributive laws of ordinary 
matrix algebra carry over to this more general setting for the case of linear operator components. For L to 
preserve compatibility with multiplication by ordinary matrices, and to associate each component of u with 
one degree-of-freedom, the domain and range of each of the operator components consist of scalar-valued 
functions. In the special case where B in (3.1) is a matrix of such functions, the o in (3.1) is interpreted 
to mean A^-oB^j = An-{Bi;i). Ordinary matrices are special cases for which each component operator 
consists of scalar multiplication by a fixed scalar value. Viewed as a single matrix, the L of 

L = A" + D~ + M^- (3.2) 
dt Öt2 

is a less trivial example of an operator-component matrix, each component being an ordinary differential 
equation operator. In mechanics the M, C, and A' denote the mass, damping, and stiffness matrices, respec- 
tively. 
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3.1    Reduced Basis Methods 

Reduced basis methods consist of an approximation to the original governing equations over subspaces, 
each of which is spanned by a small number of basis vectors. Let the columns of the matrix §d consist of 
a set of basis vectors for a chosen subspace of the domain of L. The span of the columns of «J^ represents 
the subspace of relevant system responses it for (2.1). Similarly, let the columns of the matrix $,. consist 
of a set of basis vectors for a chosen subspace of the range of L. The span of the columns of $,. represents 
the subspace of relevant system stimuli / for (2.1). The matrices Q(i and $,. are of the same dimensions. 
The accuracy of any particular reduced basis method is largely dependent on the particular choice of basis 
in <J>j and $,., such choice largely distinguishing between specific methods. Let Tr and T,i be two square 
matrices whose size is equal to the number of rows of $d and <£>,., such that §r^rr$r and «^/r^j are both 
nonsingular. The superscript | denotes the adjoint (transpose with complex conjugation). Take Pr and Pd 

as 

pr  =  rrr/ (3.3) 
Pd  =  r/rd (3.4) 

for 

r/  =  ^[^.tr,.^.]-1^ (3.5) 
r/  =  ^/rA]-1^/. (3.6) 

Note that Fr 7 and F,/ as defined by (3.5) and (3.6) are outer generalized inverses of Tr and Fd, respectively. 
By Theorem 1, Pr and Prj are idempotent as required by Theorem 2. It is also readily shown that 

$rtpr    =    $rt (3.7) 

Pd$d    =    $d- (3.8) 

The Le/f defined by (2.10) becomes 

Leff = T^^r^^Lr^Jr^^^Tj (3.9) 

in this case, where the reduced version of L for this class of methods is defined to be 

Lred = $r
fL$d. (3.10) 

The size of Lrtrt is equal to the number of reduced basis vectors, that is, the number of columns of <£,. (or 
3>rf). The essence of the reduced basis method is to use LrerT

l instead L~l to solve (2.1). Therefore, the 
number of such basis vectors must be kept small compared to the original number of DOF for the method 
to be efficient. The number of $,. 's (or <&/s) columns must be significantly less than the number of its rows 
if worthwhile problem size reduction is to occur. 

Lf//
7 = #,,Lrf?/-

1$r
t (3.11) 

It is readily verified that Lfj f1 given by 

-// 

is an outer generalized inverse of the Lfjf of (3.9) that also satisfies 

Ltj/Lrff    =    Pd (3.12) 

LtjjLtfj1    =    Pr. (3.13) 
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Since Pr and Pd are idempotent, (3.12) and (3.13) imply (2.13) and (2.14), respectively. It is also readily 
l 

eff verified that L1" = Zf// for L1" given by (2.11), so that 

LT* = Q^Lüd)-1^ (3.14) 

when (3.10) and (3.11) are used. The classic Rayleigh-Ritz reduced basis approximation consists of (3.14) 

for the special case of $,; = $,. = 3>, appropriate for self-adjoint L. 

3.1.1    Modal Method for Linear Mechanics FEM 

As a common and important application of reduced basis methods, consider the linear dynamic mechanics 
class of finite-element models consisting of second-order ordinary differential equations with real, constant 
symmetric matrix coefficients. The L of (2.1) becomes (3.2), for which the typical M and K are at least 
positive, if not positive definite. The modal reduced basis method as typically applied to such systems can be 
derived as the subcase for which rr = Td = M and $rf = <J>r = $, where the columns of $ are normalized 

such that 
$TM$ = /. (3.15) 

The superscript T denotes the transpose, the matrices being real. For this case, the matrices Pr and Pd 

reduce to 

Pr    =    A/$$T (3.16) 

Pd    =    $$TM. (3.17) 

The modal method is usually accompanied by 

• the constraint that $TL$ be diagonal, and 

• the constraint (2.23), so that (2.24) is true. This means that / = Prf = L{Lr f) for all / in the range 
of Pr, for which u = L1" f is an exact solution to (2.1). 

Substituting (3.16) and (3.17) into (2.23), matrix multiplying the result on the right by <E>, and then using 

(3.15) on the result gives 
(7-Af$$T)L$ = 0. 

This leads to 

A"*    =    M$T2 (3.18) 

C'$   =   M&ß, (3.19) 

where 

T2    =    $TA<E> (3.20) 

3   =    $TC$ (3.21) 

for A and C, (/ - M®$T)M$ = 0 being an identity for M by (3.15). The constraint that $TL$ be 
diagonal reduces to the constraint that T2 and ß be diagonal. 

If $ is determined so as to satisfy (3.18), then the columns of $ are eigenvectors satisfying the real 
eigenproblem (3.18) for which the eigenvalues lie along the diagonal of the diagonal matrix T2. The eigen- 
vectors are mass normalized by (3.15). (One usually takes $ such that A" and M are positive definite over 
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the span of the columns of #, so that the I in (3.15) and the square of T2 in (3.20) both make sense.) The 
relation (3.19) is a constraint on C. It can be put into a more conventional form by the following argument. 
Substituting (3.17) in CPd leads to CPd — M$ß$TM upon using (3.19). Substituting this into the identity 
C = CPd + C{I — P,{) produces the constraint 

C = (il/$)/j($rA/) + C{I - Pd) (3.22) 

on C. Take (3.21) in (3.19), transpose the result, and then use CT = C, MT = M, and (3.17) to get 
$rC = $TC($$TM) = $TCPd, so that $TC(7 - Pd) = 0. Matrix multiplying this on the left by M$ 
gives PrC{I - Pj) = 0 by (3.16), so that the identity C(I - Pd) = PrC(I - Pd) + (I - Pr)C{I - Pd) 
gives C[I - Pd) = {I - Pr)C{I - Pd) = {I- M$$T)C(I - $<5>TM). Substituting this into (3.22) and 
using MT — AI finally leads to the general constraint 

C = (il/$)/i(A/$)T + (/ - M§$>T)C{I - A/$$T)T (3.23) 

on the damping matrix. The constraint (3.19) implies that (3.23) and the converse is true as well. If M 
is nonsingular and one has a complete set of modes, $ then being square, then one would expect (/ - 
.U$$T) = 0 in (3.23) andC = (A/$).J(A/$)T. In practice, the (/ - A/$$r)C'(/ - M$$T)T component 
of C is usually neglected, even if one has an incomplete set of modes, so that C ~ (M^)3(M^)T. Also, 
the 3 matrix is usually specified. A common choice for ß in such cases is 

3 = 2CT. (3.24) 

where Q is a diagonal matrix with damping ratio values along its diagonal. Under the condition (3.15) with a 
complete set of modes, Wilson and Penzien (see (17) through (19) of Ref. [57]) obtain C = (M$)ß(I\I3>)T 

with 3 given by (3.24). This constraint on C generalizes Rayleigh and proportional damping. 

3.1.2    The Conventional Biscale Case of Multigrid 

In the biscale case of multigrid methods, the coarse-grid correction is essentially a reduced basis method. 
Using the notation 

L —> Lh 

u -> uh 

./' —> fh 

of Ref. [1, pp. 18-28], (2.1) represents the fine grid problem. The bigrid coarse-grid correction of Ref. [1, 
p. 21] is 

<+1 ui + L^if-Lhul] 

L^f+U-L^Lh)^, 

for L1' given by 
L     - 1HLH    lh . 

This coarse-grid correction is of the form (2.31). The above expression for L1" implies 

L      - JHi1!,  LhlH)      lh 
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when using 

LH = hi LIJH 

from (2.21) of Ref. [1, p. 27]. This is in the form of (3.14) upon taking 

$rf    =   IH 

<M    =    It 

The J;f and 1'fr are the restriction and prolongation operators, respectively, required for intergrid informa- 
tion transfer. The matrix-splitting class of error smoothers used in multigrid can be recast as continuation 
methods. As an example, splitting Lh = A - U, where A is lower triangular and U is upper triangular with 
zero diagonal, suggests the continuation T(e) = A - eU with T(l) = Lh- For this case, the zeroth-order 
(e -» 0) version of L'1 in (2.33) leads to the well-known Gauss-Seidel matrix iterative scheme for (2.30). 

3.2    Substructuring Methods 

In substructuring methods, one tries to approximate the response of (2.1) for a chosen subset of the DOF 
of (2.1); this subset being denoted as master DOF. The remaining DOF are correspondingly denoted as 
the slave DOF. For many substructuring applications, the slave DOF are associated with a collection of 
substructures that are coupled only through the master DOF, the master DOF being associated with a main 
coupling structure. Permuting the DOF into master and slave subsets can be represented mathematically by 
a (real, orthogonal) permutation matrix V, where 

VT = V~l (3.25) 

and the superscript T denotes the transpose. The permutation matrix V is defined to permute u of (2.1), so 
that the resulting first M components oiVu, collectively denoted by um, are associated with the M master 
DOF, and the remaining components, collectively denoted by us, are associated with the slave DOF. The 
convention adopted in this report is that V, by definition, gathers the master DOF into the upper part of Vu, 
so that 

Vu = (   "j"   ]. (3.26) 

and similarly for any other column matrix of the same size as u. Using this convention, a choice of sub- 
structuring is completely determined mathematically by the permutation matrix V and the number of master 
DOF M. This can be extended to square matrices of the size of u as well, and in particular 

L = VLV~1. (3.27) 

for L leads to the block partitioned form 

L= ( Lmm    Lms  ). (3.28) 
Y    J-'sm        Lss    J 

That the LV~l part of (3.27) permutes the columns of L can be seen by LV~X = LVT = [PLT]T, where 
PLT permutes the rows of LT. The Lmm of (3.28) is a M x M matrix consisting only of those components 
of L relating master DOF to master DOF. A similar statement is true for Lss with respect to the slave DOF. 
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From the point of view of this report, substructuring methods are also reduced basis methods but with 
a different structure from that of Section 3.1. In both cases, the span of the columns of <!>, determines the 
subset of 7v (L) of 'relevance." In this case, however, the projector Pr satisfies 

Pr$r = *r (3.29) 

for some choice of $,,, as opposed to (3.7). In addition, the admissible $,. 's from which one may choose are 
restricted to a class which is, in some sense, compatible with one's choice of substructuring for the system. 
This notion is made more precise by the following definition. 

Definition 2 For a given number of master DOF M and a given choice of the permutation matrix V, let 
the columns of <i>r span a subset ofTZ(L). The reduced basis consisting of the columns of $,. is said to be 
compatible with the substructuring M and V if 

det ([$,.] J[$r]m)    ^    0 (3.30) 

for the M x K matrix [$,-]„,, 1 < A.' < M, where 

*- = (ftt) (3JI) 

for $,. given by 
$,. = V$r. (3.32) 

The subscripts 777 and s denote master and slave, respectively. 

The following theorem gives this reduced-basis-compatible version of substructuring in the context of the 
formalism of this report. 

Theorem 6 Let the reduced basis consisting of the columns of <£r be compatible with the substructuring 
M and V as in Definition 2. Let 

n. = ( lr7  0 ) <3-33) 

represent shorthand notation for a matrix function of its submatrix 7 such that square, idempotent IL is the 
same size as L. The Imm of (3.33) is an M x M identity matrix. If the matrix a is defined by 

Q^^,.]^^,.],,/^,,],,,)-
1
^,.],,,/ (3.34) 

from (3.31) and (3.32), then the idempotent matrix Pr, defined by 

Pr = V-1Il0V. (3.35) 

satisfies (3.29). If 3 satisfies 
[Lss - alm,]3 = [almm - Lsm]. (3.36) 

then (2.13), (2.14), and (2.23) are satisfied for Pd, Lral, and Ie// given by 

Pd    =    V^TljV. (3.37) 

Lr,d    =    Lmm + Lms3 (3.38) 

LrI/    =    V-1eIV. (3.39) 
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where 

6 = (  Lr
0
ed    °Q  J . (3.40) 

so that 

e7= (^f1 I Y (3-4i) 
In this case, Lre,j is the reduced version of L and Lr of (2.11) and becomes 

L7* = V^ngQ'V. (3.42) 

Appendix D contains the proof. The hypothesis of Theorem 6, if satisfied, implies (2.14) and (2.23), which 
in turn, by Theorem 2, implies (2.24). As shown previously (just after Theorem 2), (2.24) implies that 
L1' f is an exact solution to (2.1) for all / such that Prf = /. The special case of a = 0 in (3.35) corre- 
sponds to conventional substructuring and its variants as currently practiced, with the zero frequency limit 
corresponding to Guyan condensation. For a = 0, Prf = f implies / = V^UoVf, so that 

/ = T-1 ( ^   J . (3.43) 

The slave DOF hence cannot be loaded for conventional substructuring if L1" f is to retain its exact solution 
status for that case. The idea of using a as in (3.35) and (3.36) has been presented before [52, 20, 49], but 
its use in connecting reduced basis methods with substructuring methods is emphasized here. There is some 
similarity in the use of (3.34) for a and the Modal Reduction method (see (10) of Ref. [21, p. 327], for 
example), which only considers the case in which the reduced basis consists of system modes. The Modal 
Reduction method, however, builds the reduced system $+L$ from the transformation matrix (/ aT)T, and 
the similarity ends with (3.34). 

3.2.1    Reduced-Basis/Substructuring Relationship 

If the number of columns of <3>r is equal to M, the number of master DOF, then the reduced basis approach 
of Section 3.1 and the version of substructuring given by Theorem 6 can be directly related to each other. 

Theorem 7 Assume the hypothesis of Theorem 6. Take the columns of 

$r = V-lIla( 
[^m Y (3.44) 

as the reduced basis for 1Z(L), and similarly, take the columns of 

$rf = 7,-1n;3(   ^]m   J (3.45) 

as the reduced basis for V(L), where ß satisfies (3.36), and [<&,-]„, and [<£</],„. are each square and nonsin- 
gular. For comparison purposes, denote the substructuring version of L1* from (3.42) as LIx

sub. For $,. and 
$,j given by (3.44) and (3.45), respectively, denote the reduced basis version of L1" from (3.14) as L1 rh. 
The Lr*h and L!luh are directly related to each other by 

L^^rJl^ri^Qr)-1^]. (3.46) 
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The proof is deferred to Appendix D. Note that $r(<I>rt
<Jv)~1<I>,.t of (3.46) is idempotent. This im- 

plies that LIx
rh and LIx

guh coincide over the range of ^.(^«iv)-1^. Applying (3.46) to $r and using 
[$,.($/.

t$,.)_1$,.t]$,. = $,. to the result leads to L1^,. = LT*sub$r. This implies that L1',, and L1'^ 
coincide over the span of the columns of «I1,.. 

3.3    Smoothing/Homogenization Methods 

Fishman and McCoy (Ref. [13, pp. 47-48]) have unified smoothing and homogenization under one formal- 
ism. Proof that the Fishman and McCoy formalism is a subformalism of this report constitutes proof that 
smoothing and homogenization are encompassed by this report. Smoothing methods presuppose the exis- 
tence of a "comparison operator" LQ, a user-chosen approximation to the system operator L of (2.1). The 
term is taken from applications involving the smoothing of heterogeneous material response in which the 
L and L0 typically represent the system operator of a heterogeneous media and an associated "comparison 
media," respectively. The comparison media is often assumed to be spatially homogeneous with constant 
constitutive parameters which are "close enough" to the spatially fluctuating ones of L to make the differ- 
ence between L and L0 a perturbation. In the abstract case, the comparison operator L0 is a linear operator 
that is presumed to satisfy, by definition, the conditions 

M{LQ)    =    {0} (3.47) 

L0P   =    PrL0 (3.48) 

for Pr of Theorem 2 and P, a linear idempotent operator for which 7Z(P) C V{L). Condition (3.47) 
guarantees that L0~l exists. In applications involving the smoothing of the linear response of stochas- 
tic heterogeneous materials, for example, the P and Pr are usually both taken to be equal to a common 
ensemble-averaging projector. A general formalism for smoothing is summarized in the following theorem. 

Theorem 8 Let L0 be a linear operator satisfying the conditions (3.47) and (3.48). Define SL = L - L0 for 
L of (2.1), so that 

L = L0 + 5L. (3.49) 

If E_1 exists for 

and Pri is defined by 

then (2.23) and 

Z = L0+{I-Pr)5L (3.50) 

Pd = [I-'E:-1(I-Pr)SL]P, (3.51) 

PPd    =    P (3.52) 

Pi2    =    P,i (3.53) 

Usi    =    {u^Pr{8L)[l -Y.-\l -Pr)[bL)^P 

=    P,.{L0 + [I- (SL^-'il - Pr)}(6L)p}. (3.54) 

for Lej f given by (2.10). 

Corollary 3 Under the hypothesis of Theorem 8, if the constraint 

Pr{SL)P = 0 (3.55) 
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is satisfied, then 

Pd 

LPI 

[I-E^SLIP 

L0-Pr(8L)^-l(SL) P 

pJLo-iSL^-'iSQP 

(3.56) 

(3.57) 

for Lfjj given by (2.10). 

Proof: LetG = ^-1(I-Pr) so that EG = (/-P,.),andO = Pr{l-Pr) = PrZG = Pr[L0+{I - Pr)6L]G ■■ 
LQPG by (3.50) and (3.48). This means that TZ(PG) C M{L0), so that PG = 0 by (3.47). This proves 

PE'Ul- p.) 0. (3.58) 

Using this and (3.51) in PPd = P[I - ^{I - Pr)8L]P = P proves (3.52). Using (3.51) and (3.52) in 
Pd

2 = [I - IT1 (7 - Pr)SL]PPd = [I - IT1 (7 - Pr)5L]P = Pd proves (3.53). To prove (2.23), take 
u G K{Pd) so that u = Pdu = [I - IT^J - Pr)6L]Pu by (3.51) and (3.53). (An idempotent operator 
acts as the identity over its range.) This leads to (7 - P)u = -I]-1 (7 - Pr)(SL)Pu, so that E(7 - 
P)u = -(/ - Pr){5L)Pu. However, (/ - Pr)L{I - P) = (/ - Pr)[L0 + SL]{I - P) = L0(I - P) + 
(I - Pr)SL(I -P) = [70 + (/ - Pr)SL]{I -P) = S(/ - P) by (3.49), (/ - Pr)L0 = L0(I - P) from 
(3.48), the idempotent property of P (and of I - P), and (3.50). Substituting this into the previous result 
gives (7 - Pr)L(I - P)u = -{I - P){SL)Pu. The interim results PrL(I - P) = Pr[SL){I - P) and 
(/ - Pr)LP = (7 - P){SL)P follow from PrL0{I - P) = L0P(I - P) = 0 and (/ - Pr)L0P = (7 - 
Pr) Pr L o = 0, respectively. Substituting the latter interim result into the previous result gives (I - Pr)L{I - 
P)u = -(/ - Pr)LPu, so that 0 = (/ - Pr)L(I - P)u + (/ - Pr)LPu = (I - Pr)Lu. Since u e TZ(Pd) 
was arbitrary, (2.23) is proven. Finally, using (3.51) in (2.10) for Le// leads to 

PrL[I -TTl{I - Pr)5L]P 

PrLP - PrU£Tl{I - Pr)(SL)P 

Pr[L0 + SL]P - PrL(I - P)^-1 (I - Pr)(8L)P 

UP + Pr(5L)P - Pr(5L)(I - P)^-\I - P)(SL)P 

L?ff 

L0P + P(SL)P - Pr(SL)^-l(I - Pr)(5L)P (3.59) 

when using (3.49), (7- P)^'1 (7 - Pr) = E"1 (7 - Pr) from (3.58), (3.48), PrL{I - P) = Pr(5L){I-P), 
and (7 - P)E_1 (7 - Pr) = E-1 (I - Pr) again, respectively. The two right-hand sides of (3.54) are just 
rearrangements of (3.59), where (3.48) was used in the latter. 

The Lfjj of Theorem 8 takes either of the forms 

Pff    =    {Lred)dP 

=      Pr(Lrtd)r 

when defining the reduced system operators 

(Lrcd)d   =   70 + F,.(<57)[7-!]-1(7-Pr)(^7)] 

(Lrfd)r    =   L0 + [I-(6L)Z-Hl-Pr)](SL)P, 

which simplify to 

(7,,,,),,   =    Lo-PASL^-^SL) 
(Lra,)r    =   70-(£7)E-1(d7)P 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 
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when (3.55) is satisfied. Define {Lej/)r and {Lej/)d as 

(Lcff1),-      =      (Lr^Pr (3.65) 

(F,//),j    =    P{Lred)j\ (3.66) 

so that the choice of {Lre,j)r for the reduced operator leads to 

Lr:fj{Leff
I)r = Pr, (3.67) 

which gives (2.14) when operating on (3.67) from the right with Pr. The choice {Lrfd)d leads to 

(Lef/ULtff = P, (3.68) 

which gives (2.13) when operating on (3.68) from the left with Pd. Operating on (3.67) on the left by (3.65) 
shows that (Lf//)r is an outer generalized inverse of Leff. Similarly, operating on (3.68) on the right by 

(3.66) shows that (Ic//
J)(/ is an outer generalized inverse of Lejj. Taking L1" from (2.11) leads to 

L1* = PdPred-
lPr (3.69) 

for generic Lred; that is, either {Lred)r or {Lred)d can be substituted for Lrtd in (3.69). 

If / satisfies the constraint 

Prf = /• (3.70) 

so that/ G ft (P,.), then 

u = Ll* j (3.71) 

is possibly an exact solution to (2.1). For the choice of {Lred)r as the reduced operator, (2.23) from Theo- 
rem 8 and (2.14) together imply (2.24) by Theorem 2. Assuming that {Lrtd)~l f exists, (2.24) and (3.70) 
imply that (3.71) is a solution to (2.1). For the choice of (L,.f d) d as the reduced operator, let g be the solution 
to 

{Lred)dg = Prf (3.72) 

subject to the constraint that 

Pg = 9 (3.73) 

so that, if it exists, g € TZ{{Lred)-
1 Pr)r\TZ{P). The problem (3.72) is the "reduced version" of (2.1) for this 

case. Define u by 

v = Pdg. (3.74) 

so that (3.71) follows from (3.69) with {Lrfd)d substituted for Lrtd. Operating on (3.74) on the left by P, 
using (3.52) on the results to get Pu = Pg, and then substituting g for Pg from (3.73) gives 

Pi' = g. (3.75) 

The constraint (3.70) and 

Lit    =    LPdg 

=    PLPdg 

=   Lr.jjg 

=    (Lrfd)dPg 

=       {Lrcrl)dg 

=      Prf, 
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which follows from (3.74), (2.23), (2.10), (3.60), (3.73), and (3.72), respectively, show that u is a solution 
to (2.1). 

The formalism of Fishman and McCoy (Ref. [13, pp. 47-48]) is a subformalism of this report corre- 
sponding to (3.70), [Lre<i)d as the reduced operator choice, the constraint (3.55), 

Pr = P (3.76) 

for a special class of P and a specific choice of LQ. For this case, (3.72) reduces to 

[U - P(SL)[L0 + (/ - P)SL]-1(SL)}Pu = f (3.77) 

on use of (3.75), (3.70), (3.63), (3.50), and (3.76). Fishman and McCoy use the notation Pv = < v > for 
generic (response or stimulus) r G V (L) or 7v (L), where < v > represents the macroscale component of r. 
Implicit use of the admissibility test Pf = /, from (3.70) and (3.76), for any given stimulus / is made by 
Fishman and McCoy Ref. [13, pp. 47-48]; / is a "forcing with variations restricted to the macroscale." This 
is also true in the formalism of Steinberg and McCoy (Ref. [16, pp. 1135-1136]), as seen by < u0 > = u0 

in (19) and (22) of Ref. [16, p. 1135] when making the notational association / -> u0. If P is restricted so 
as to satisfy the properties 

P <A>    =    < A> P (3.78) 

PAP   =    < A> P (3.79) 

for generic linear operator .4, and if LQ is taken to be 

L0 =< L >. (3.80) 

then PL0 = L0P, corresponding to (3.48) with (3.76), is immediately seen to be true by (3.78). P(6L)P = 0, 
corresponding to (3.55) with (3.76), is also true and can be seen by 

P{SL)P   = P(L- < L >)P 

= PLP - P < L> P 

= <L> P- <L> P2 

= < L> P- < L> P 

= 0, 

when using (3.49) and (3.80), (3.78), and (3.79), and P2 = P, respectively. The constraint (3.78) on P 
corresponds to the constraint (21) of Steinberg and McCoy (Ref. [16, p. 1135]), but it does not seem to be 
explicitly acknowledged by Fishman and McCoy. The relation (3.77) takes the form 

{<!>-< (SL)[< L> + {I- P)(SL)]-1{SL) >}< u > = f (3.81) 

when using (3.80), (3.79), and then Pu —>• < « >. Equation (3.81) is exactly the same as the combination 
of (5) and (6) of Fishman and McCoy (Ref. [13, p. 48]) if the notational adjustment 6L -> V is made in 
(3.81). 

4.     BISCALE CONJUGATE APPROXIMATION 

Consider a class of methods under the umbrella of this formalism for which the t-embedding for the conju- 
gate approximation is based on the premise that there are two relevant time scales, one governing the "fast" 



r 

0 d       d        — ■> h e  
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part of the overall response and one governing the "slow" part of the response. Specializing the derivative- 
expansion version (Ref. [8, pp. 230-232]) of the multiple scales perturbation method to a biscale expansion 
in time prescribes that 

(4.1) 

be substituted for the time derivatives in L to obtain T(t), where to is the time variable associated with the 
fast time scale and ti is the time variable associated with the slow time scale. (The choice of two scales is 
based not only on its simplicity and common occurence, but also that one must be more cautious in the use 

of the multiple scales approach for three or more scales [58].) This embedding leads to finite expansions for 
T{() in e for many common L's, which are local in time. 

4.1    Frequency Window Variant 

A variant of this temporal biscale approach is to use the Fourier representation of the ^-dependence in the 
perturbation, so that to -dependence —> uio -dependence. As to is associated with the fast time scale, there 
should be a "cutoff" value of ^0 below which the ti -dependence dominates. For those cases for which 
L(d/dt) satisfies 

d       d .    Tl. d 
at0      dti at i 

where Jr
io denotes the Fourier transform of the fo-dependence into ^0 -dependence, the continuation is taken 

to be 

T(e,*0) = L(iuj0 + e^-). . (4.3) 

Ft0L(är + * —) = £(>-'o + f—)?t0. (4.2) 

Öl 

Substituting T(t. ^0) of (4.3) into (4.2) leads to 

L[Wo+€'dT1
)    =    ^o-'Tie.^o)^ (4.4) 

L^ + €^        =    FtQ-
lT{€^o)-lFiQ (4.5) aio       eft i 

after some rearranging. This indicates that 

L~l = Jr
to~

1T(t,u)0)~ ^0|e_ 0-^.1 (4.6) 

can be used in place of (2.33) as the conjugate approximation of L~l. For those cases satisfying (4.2), 

?o~     =    T~ (e.u;o)|e _>. o 

=    I(wo)-1. (4.7) 

so that To-1/ can be interpreted as the time-harmonic response of L to / at the frequency v, where 
^'o = 2TT7/. At a given frequency, the perturbational expansion about e = 0 itself can be interpreted as a 
transient departure, on the fi (slow) time scale, from the time harmonic solution at v = ^0/2T7. The only 
inversion required to obtain the Q; operators in (2.61) is T0~~', so that obtaining the Q} 's as a function of ^0 

reduces to time-harmonic re-analysis. A practical computational approximation is to restrict the range of v 
values to a given frequency window of interest for the particular problem (2.1). At least one case satisfying 
(4.2) is that for which (2.1) is a set of linear coupled ordinary differential equations in time with constant 
coefficients, L then is a polynomial in the time derivative operator. 
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4.1.1    Linear Coupled O.D.E. Systems with Constant Coefficients 

The ordinary differential equation setting is generic but at the same time well-rooted in concrete applications. 
This setting encompasses many useful classes of models, with examples arising from finite element methods 
(FEMs) and large linear electronic circuit response. Additionally, this setting is sufficiently specific in scope 
as to allow the explicit construction of the conjugate approximation results in terms of generic coefficient 
matrices for the differential equations. A summary of these results is given by the following theorem, whose 
proof is deferred to Appendix E. 

Theorem 9 Let the system operator L for the Jth order set of ordinary differential equations (2.1) be 
denoted by 

L = Y,^-j- (4.8) 
.,=0 Ul 

where the Cj coefficients are constant, square matrices each of the same size. Applying the biscale pertur- 
bation of (4.3) to (4.8) leads to (2.34) for 

Tj    =    fjM^L (4.9) 
dtr1 

fk(^o) = Y, ( ™ Wr~Axm, (4.io) 

where the binomial coefficients are 
/   m 

(4.11) 
\  k  J      ki(m-k)l 

The conjugate approximation continuation (2.50) reduces to 

M -y, 
T(e.ojo)-1    «    JVä-po)—^, (4.12) 

where the component matrices $; are recursively given by 

j 

*, = H0]f-1 - £ Hjkf^fkVj.k, (4.13) 
k=i 

the wj0 dependence being implied. The Hj^.'s are defined by (2.38). 

The conjugate approximation to L~l given by (4.6) reduces to 

M 

./=u 1 
?t0. (4.14) 

Note that (4.9) and (4.10) produce 

Tj    =   Cj (4.15) 
j 

T0    =    Yi (*">oPA 
7)1 = 0 

=    To (4.16) 

as important special cases.   The bulk of the work in obtaining Z_1 is in computing the time harmonic 
response ro

_1 for values of ^o corresponding to the chosen frequency window. 
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4.2    Alternative ODE-Model Methods for Reduced Basis 

In the case of reduced basis model reduction, an alternative variant of the ordinary differential equation 
biscale method of Section 4.1.1 serves as a precursor to and a generalization of the force derivative method. 
For (/ - iJL)^1 - L~l - L1 in (2.4), an alternative form for (2.32) is 

L-1    «    A(6)|€ = 0->1 (4-17) 

for 
A(e) = LT* + [L-1-LI*](e). (4.18) 

In this case, for which the e-continuation of the conjugate approximation is extended to include the entire 
residual term L~l - L1*, one gets 

A(f) = $d($,.tL$rfr
i$,.+ + 

{<+4)~,-*<[*',< + '£,*<1~,*',j 
=    $d($r

tL$d)-1$r
t + 

^0-
1{T(6.u;o)-1 -^[QMe.^Qd]-1^}^. (4.19) 

when using reduced basis version (3.14) of L1', (4.4), and (4.5). If $,. and <£>,/ are independent of e and ^0, 
then Lemma 5 of Appendix E can be used with r -> tu ft, ->• tj, and fj -> Q^fj^o^d from (2.34), 
(4.9), and T(e) ->■ ^r^T{t.^0)^d- This results in 

[QMe^om-'    «    Ee^V(^o)—7. (4-20) 
^ 

where the component matrices tb.j are recursively given by 

j 

r^/foj^To^)-1- Y, Hjk&SfoQd)-1 (*,+Tfr$d) tV- 
LA-=1 

(4.21) 

the ^'o dependence is implied. Substituting (4.12) and (4.20) into (4.19) and the results into (4.17) leads to 

^o"11 E [*;(*ü) - MA«*)*^— U„ (4-22) 

as a reduced basis hybrid method for sets of coupled ordinary differential equations, where the vpj's are 
recursively given by (4.13). 

4.2.1    Tunable Force Derivative and Generalized Lanczos Methods 

One can generate a systematic approximation to the reduced basis hybrid method just developed by expand- 
ing 

[^J^0)-^dVJ^0)^ri] =  J2 
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about the value ^" as a Taylor series, assuming an analytic dependence on ui0. If only the first term in the 
expansion is kept, one gets 

^o"1   L [*;(->o) - ^v^o)^}-— \Ti0 TO 
—, OT-i-   I dh- 

.7 = 0 ^fl 

on the right-hand side of (4.22), so that 

M 
L~l    «    $d($rtL$rf)-

1$rt + ^[$ (,;.)_ $^.(ii.-)$rt]^L (4.23) 
r--        ' ' r)t,J 
.7=0 

'0/ 

results as the zeroth-order approximation to (4.22). It is proven later that the conventional force derivative 
method results from the ^* ->• 0 subcase of (4.23), so that (4.23) represents a tunable generalization of the 
force derivative method. 

Taking the above Taylor expansion in (4.19) leads to 

A(e)    =    $d($r
tI$d)-1$r

t + 

{He.**)-1 - <Pd[^^T((.^)^d]-l^rj} (4.24) 

when keeping the first expansion-term only and canceling the Fourier transform with its inverse. The gen- 
eralized Lanczos reduced basis method is based on the idea of finding <£c/ such that 

A(e) = Qd&SLQd)-1^ + 0(ek) (4.25) 

for (4.24) for some chosen A- > 0. For such a choice of $rf, only the Q^i^^L^d)'1®^ term needs to be 
kept in (4.23). Such a $j can be constructed if one assumes that the admissible /'s to be considered for 
(2.1) are to be taken exclusively from the set V, where / G V implies 

f = Fg(t) (4.26) 

for some g. The matrix F common to all of the /'s is time-independent, and g is a time-dependent vector. In 
mechanics for example, (4.26) represents a superposition of static loads (columns of F) using time-varying 
coefficients (components of g). Choose the block columns of <£>,/ as $ j (^*)F in the left-to-right sequence 
j = 0.1 A - 1, so that 

*</(-•') = f *opÄ)F    *!(^)F    •••    *,_I(-*)F). (4.27) 

where the tyj 's are given by (4.13). The number of columns of F (and correspondingly, components of g) 
should be small compared to the size of (4.8), so that the number of columns of <&,/, is small compared to 
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the number of rows of $j. Taking M -> k - 1 and u>0 —> u;* in (4.12), applying the result to (4.26), and 
then substituting <J>^ for the right-hand side of (4.27) leads to 

A'-l 

T^sr'f = Y.^j(^)Fy'^7i + 0 

= $„ 

\f 

9 
lit 

,-k-l ^ 

dts 

\ 

+ 0(ek) 

1. Using this 

=   $>dh(t) + 0((k) 

for h(e) defined with block rows e' dJgj'dt 1 ■' in the top-to-bottom sequence j = 0.1..... A- 
in 

=    <Pd[^T(€^)^d]-1^T(e,^)T(€,^T1f+0{€k) 
=    $rf[$rtr(f,cl;-)$d]-

1$,.tr(e,u;*)$dft(f) + (?(£
A:) 

=    T(e.^r\f + 0(€k) 

shows that (4.24) reduces to (4.25) for the choice of (4.27) for <&</. For first or second order (J = 1 or 
2) cases, this resembles the method of Häggblad and Eriksson [29]. The span of the columns of $f/, for 
$fi given by (4.27), will later be shown to reduce to a conventional Krylov subspace under special circum- 
stances. In such cases, this becomes the conventional Lanczos method, with proper normalization of $</'s 
columns. 

4.3    Conventional Force Derivative Lanczos Submethods 

For the linear dynamic mechanics class of finite-element models for which the force-derivative and Lanczos 
methods were originally developed, the ordinary differential equations are second order with real, constant, 
symmetric matrix coefficients. For the symmetric case, <&^ = $,. = $ is reasonable. The second-order 
representation (3.2) of (2.1) is given in terms of (4.8) for J = 2 as 

Co = K 

d = C 
Co    =    -M. 

(4.28) 

(4.29) 

(4.30) 

where u(t) and /(f) of (2.1) are interpreted as the displacement response and applied loads, respectively. 
For an equivalent first-order (or state) representation [38, p. 12], L is given by (4.8) for J = 1 and 

Ci 
0 M 
M C 

-M 0 
0 A" 

(4.31) 

(4.32) 
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where the £Q and £j matrices are constant, real, and symmetric since this is true for M, C, and K, and 
where 

0 

f t 
du 
dt 
U 

(4.33) 

(4.34) 

are used in (2.1). The development that follows will use the second-order representation. 

Equation (4.10) with ^-0 —> reduces to 

To    = — LÜ *2M + ^ *C + K 
?"i    = 2iuj *M + C 

T-2      = M 

(4.35) 

(4.36) 

(4.37) 

when using (4.28) through (4.30). The reduced basis versions of these coefficients become 

$Tf0$    =    -u;*2/ + w'fl + T2 (4.38) 

$rfi$    =    2iu>xI + ß (4.39) 

$Tf2$    =    / (4.40) 

when using (3.20), (3.15), and (3.21). The ti-j component matrices are recursively given by (4.21), which 
reduces to 

v0    =    ($Tf0$)-1 (4.41) 

^    =    -($Tfo$)_1($Tf1$)($rfo$)-1 (4.42) 

tm      =      -($Tfo^)-1[(^Tri^)^-l + ($Tr2$)^!-2l, (4.43) 

for m > 2. The if! j component matrices are recursively given by (4.13), which reduces to 

*o    =    To"1 (4-44) 

*i    =    -f^fifö1 (4.45) 

*,„    =    -To"1 [f!*m_i +f2*m_2] (4.46) 

for m > 2. 

4.3.1    Force Derivative as a Submethod 

The force-derivative method corresponds to the limiting subcase of uj* —> 0, so that in the second-order- 
representation (4.35) through (4.37) reduce to 

To   =    K (4.47) 

fi    =    C (4.48) 

f2    =    M. (4.49) 
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The reduced basis versions of these coefficients (4.38) through (4.40) become 

$rf0$  = 'v~>2 

$rfl*  = =   3 

$Tf2<s>  = --   I. 

(4.50) 

(4.51) 

(4.52) 

The i-j component matrices of (4.41) through (4.43) reduce to 

Vi = y — 2 jT-2 

fl'm = y — 2 
3li'm-l + t'm _2 

*0 = A'"1 

*1 = -A-^'A-1 

*m = -A'-1^,. -i + MÜ 

c0   =   T"2 (4.53) 

(4.54) 

(4.55) 

for 777 > 2, when using (4.50) through (4.52). The §; of (4.44) through (4.46) reduce to 

(4.56) 

(4.57) 

(4.58) 

for m > 2, when using (4.47) through (4.49). Taking uj" —^ 0 is somewhat of a contradiction in the context 
of t0 as the fast variable, for which ^0 (and hence LJ") is associated with "higher" frequencies. However, 
only the t\ (slow) time scale remains (take OJ* —> 0 and e —>■ 1 in (4.3)), suggesting t\ —>■ t. 

Using the first three terms of (4.53) through (4.55), the first three terms of (4.56) through (4.58), 
T~2 -¥ Q~2, 3 -» A, a,<* -» 0, and fj ->■ f for the slow time a// in (4.23) reproduces (38) of Ref. [38, 
p. 29]. (The Y~2 and 3 substitutions account for notational discrepencies between Ref. [38] and this re- 
port.) For the case of an arbitrary number of terms, taking t\ —> t and u>* —> 0 in (4.23), substituting this 
result for L~l into L~x f (from (2.1)), and then using the notational associations 

<£<—►$ (4.59) 

q    ^^    ($TI$)-1$T/ (4.60) 

QU)    <—►    —fforj>0 (4.61) 
dtij 

Au    i—>    i-jforj>0 (4.62) 

Blmj    <—>    *jforj>0 (4.63) 

reproduces the conventional force derivative results (39) of Ref. [38, p. 30]. Proof of this essentially hinges 
on proving the correspondence between the i/>y and \I/; coefficients of (4.53) through (4.58) of this report 
with the Ai,j and ßi.,- coefficients of Ref. [38, p. 30] and [59, p. 716]. To show this, the equations given 
by both Ref [38, p. 30], and by (A8), (A9), (A16), and (A17) of Ref. [59, p. 716], for the Au and Bu 

coefficients are reproduced here as 

-4ij = -ft-2A.4w_1~fi-2_42.J_1forj>l (4.64) 

M.j = .41,,-iforj > 1 (4.65) 

-4 i.o = Q-'2 (4.66) 

-4 2.0 = 0 (4.67) 



Bij =   -K~lCBh^x - IC ~lMB2.j -1 for j > 1 

B-2.J =    BLJ-! far j>l 

Bi.o =    A'"1 

B2.0 =    0. 
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and 

(4.68) 

(4.69) 

(4.70) 

(4.71) 

respectively. (The notation Q~2 and A of Ref. [59] corresponds to Y~2 and 3 of this report, respectively. 
The "hats" on Q~2 and A of Ref. [38] have been "dropped" in favor of the notation of Ref. [59].) It is readily 
verified that tt~2 -> T~2 and A -^ ß in (4.66), (4.67), and the j = 1 case of (4.64) lead to 

ALI = -T~2ßT-2, (4.72) 

and that (4.70), (4.71), and the j = 1 case of (4.68) lead to 

B1.1 = -A'_1CA'_1. (4.73) 

Equations (4.53), (4.54), and (4.62) are in agreement with Q~2 —> Y~2 in (4.66) and (4.72), and equations 
(4.56), (4.57), and (4.63) are in agreement with (4.70) and (4.73). Equations (4.62) and (4.63) are verified 
for j = 0.1. Taking j —> j' — 1 and dropping the prime, equation (4.65) leads to 

A2j-i = *4i.j-2 for j > 2. 

and (4.69) leads to 

B^j-i = -Bij-2 for j > 2. 

Substituting these into (4.64) and (4.68) leads to 

Altj = -T_2/Mi,j-i - T_2^i,j_2 for; > 2 (4.74) 

and 

Bhj = -A"_1Cßi.j_i - A'_1il/ßij_2 for j > 2, (4.75) 

respectively, when using Q~2 —> T~2 and A —> ß. Substituting (4.62) into (4.74) and (4.63) into (4.75) 
leads to (4.55) and (4.58), respectively. Equations (4.62) and (4.63) are verified for j > 2 as well. Taking 
fi —>• t and ^" —> 0 into (4.23), substituting this result for L~x into L^1f, and then using (4.53) through 
(4.58) in the results is collectively equivalent to the conventional force derivative results of Ref. [38, p. 30] 
for second-order formulated systems. 

4.3.2   Lanczos as a Submethod 

In the limiting subcase ^" —=► 0, (4.13) reduces to (4.56) through (4.58) for the ^;-'s defining <J> in (4.27). If 
one takes C = 0 in (4.56) through (4.58), they further reduce to 

§0    =    A"-1 (4.76) 

*2./_i    =    0forj>l (4.77) 

*2;    =    (-K-1 M)j K-1 for j>l, (4.78) 

so that (4.27) reduces to 

$=(h-1F   (-A'^Jl/JA'-'F   •••    {-K-KMYK^F ) (4.79) 
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after eliminating the zero columns arising from the ^ j 's of odd j, where (' = (k - 1) j'l for even k - 1 and 
( = (k - 2)/2 for odd A- - 1. Except for the (irrelevant) alternating sign with each power of -A""1 M, the 
columns of <J> in (4.79) are seen to form a block version of the Krylov sequence (Ref. [24, p. 566]) tradition- 
ally associated with L specialized to J = 2 in (4.8). The initial block K~1F of (4.79), whose columns are 
the static solutions to the loads of the columns of F, is the usual recommended initializing choice (Ref. [24, 
p. 568]) for the Krylov sequence in reduced basis applications. (The case for which F has just one column 
and (j just one component results in the standard, "nonblock" version of the Krylov sequence.) The con- 
ventional Lanczos method uses a reduced basis consisting of the above Krylov sequence, which has been 
orthonormalized with respect to the mass matrix. 

One might suspect that the C — 0 assumption may hurt the Lanczos method's ability to handle general 
damping cases, and some evidence of this is found in the conclusions of Ref. [36]. In particular, the force- 

derivative method, which uses a finite set of the nonzero-C */s given by (4.56) through (4.58), efficiently 
and accurately handles the nonproportional damping case of Ref. [36], in contrast to the Lanczos method. 
Nevertheless, one possible advantage to the usual Krylov sequence (from the C = 0 assumption) in con- 
junction with the orthonormalization process is that together they produce a tridiagonal reduced problem 
(see Nour-Omid and Clough (Ref. [24, pp. 567, 569]) or Golub and Van Loan (Ref. [60, p. 477])). 
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Appendix A 

A.    PROOF OF THEOREM 2 

The following lemmas are preliminary to proving theorem 2. 
Lemma 1 Given operators Pj, Pr, and T, the operator Pd(P.PPd)1 P-, when it exists, is an outer gener- 
alized inverse of P. 

Proof: Substituting Pd{PrT Pd)1 Pr for A1 in A1 A A1 leads to 

PdiPrTPdYPrTPdiPrTPdYPr      =      Pd(PrTPd)
J(PrTPd) (PrTPd)1Pr 

=      PdiPrTPd^P... 

proving the lemma. 

Lemma 2 Given a fixed linear operator T and two fixed linear, idempotent Pd and Pr, P^T Pr is unique 
for all T1 such that 

Pdp
!p   =   Pd (A.l) 

TTlPr    =    Pr (A.2) 

are simultaneously true. 

Proof: Suppose that there are two outer generalized inverses of T, label them T\   and T-2 , each of which 
satisfied (A.l) and (A.2) simultaneously. They would obviously satisfy 

PdT^T   =    PdTojT (A.3) 

TTiTPr    =    TT.JPr, (A.4) 

and because they are outer generalized inverses of T, they would also satisfy 

r/rr/  =  r/ 
TyjTToJ    =    T-21. 

and hence 

PdT^TT^Pr    =    PdT^P (A.5) 

PdT-i'TTjPr    =   PdTi'p. (A.6) 

Substituting (A.4) into (A.5), and (A.3) into (A.6), leads to 

PdP^PPo1?,-      =      PdTl'Pr 

PlT^PT/Pr      =      PdT^Pr- 

respectively. These final two equations clearly show that PjT'i1 Pr = PjT-21 Pr, and the lemma's proof is 
complete. 

37 



38 L.D. Flippen, Jr. 

Lemma 3 Given two linear idempotent operators P and II, 

pn   =   n    —> 
ft(Il)    C    ft(P) (A.7) 

pn  =  p    —> 
ft(P)    C    11(11) . (A.8) 

Proof: If / G ft (II) then f = Ut = PYlt = Pt so that / G 1Z(P), proving (A.7). The relation PU = P implies 
P(J-n) = 0, which implies (7-P)(/-n) = (/- n), which in turn implies R(I - U) C ft(7 - P) by 
(A.7). This, in conjunction with 11(1 - II) = A'(II) and R(I - P) = A'(P), leads to A'(II) C.V(P). Us- 
ing the fact that .4c C Bc impliesP C A for generic .4 andP, N{U)C = ft(II)-{0},andA'(P)r = ft(P)- 
{0} in the results leads to 1Z(P) - {0} C ft(II) - {0}, where the superscript C denotes the (set) comple- 
ment. The union of both sides of this result with {0}, along with 0 e TZ{TL) and 0 G TZ(P), leads to (A.8). 

The proof of Theorem 2 itself is now given as follows. 

• 

• 

• 

• 

• 

To show that L1" is an outer generalized inverse of L, use (2.10) to substitute PrLP,j for Lejj in 
(2.11), and then apply Lemma 1, with T —>■ L, to the result. 

To prove (2.12), let i- G A'(P,-I). One then has (/ - L1'L)v = (J - PdL,f}
JPrL)v = v from (2.11) 

for idempotent (/ - Lr*L), so that v G 11(1 - L!*L), proving (2.12). 

The relation L1'LPd = PHLef j1~PrLPd = PdLef j1'Leff = Pd follows from (2.11), (2.10), and (2.13), 
proving that (2.16) follows from (2.13). The converse, that (2.13) follows from (2.16), is also clearly 
true. 

To prove (2.15) follows from (2.13), one first notes that application of (A.7) of Lemma 3, with P —>• Pj 
and n -» L!*L, to PjL^L = Pd

2Lf!!
lPrL = FrfIe//

7FrL = LrL leads to 1Z(LrL) C P(Pd). 
However, application of (A.7) of Lemma 3, with P —>■ L1* L and U —> Pj, to (2.16) leads to 
'R-(Pd) C P(LrL). Together these results prove 1Z(LrL) = 1Z(Pj), which combines with 
R(LIXP)= X(I - LIXL) to prove (2.15). 

To prove (2.17) follows from (2.13), one starts with [lZ{Pd) n N(PrL]\ C [1Z(Pd) n 11(1 - L1* L)] = 
[A'(I - LrL) n 11(1 - L'*L)] = {0}, which follows from (2.12) and (2.15). Substituting this into 
A'(LffI) = {[JZ(Pi) n M(PrL)\ U A'(Prf)}, which follows from (2.10), leads to (2.17) upon using 
oeA'(Pd). 

The relation PrLLf* = PrLPdLff /' Pr = LtULtn
lPT = Pr follows from (2.11), (2.10), and (2.14), 

proving that (2.19) follows from (2.14). The converse, that (2.14) follows from (2.19), is also clearly 
true. 

To prove (2.18) follows from (2.14), one first notes that application of (A.8) of Lemma 3, with 
P -> LLr and n -i Pr, to LlJ'p. = LP,,LeJ/'P,2 = LPdLef{

IPr = W leads to 
P(LLIX) C 1Z(Pr). However, application of (A.8) of Lemma 3, with P -^ Pr and II ->• LL1", to 
(2.19) leads to lZ(Pr) C R(LLr). Together these results prove R(LLr) = R (\Pr), which combines 
with ft(LZ,7*) =A'(/- LI7") to prove (2.18). 

To prove (2.20) follows from (2.14), first note that PrL(l-lJxP) = (Pr- PrLlJ")L = (Pr-Pr)L = 
0 follows from (2.19), so that R(I - L1"'L) C X(PrL). This result combines with (2.12) to prove 
(2.20). 
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• As T —> Lfjj in (A.l) and (A.2) of Lemma 2 corresponds to (2.13) and (2.14), respectively, then 
(2.11) and Lemma 2 together show that L1* is unique when (2.13) and (2.14) are simultaneously 
satisfied. 

• The relation L1" L = PdLtn
lPrL = PdLtU

1PrLPd = PdL.jj1Le}} = Pd follows from (2.11), 
(2.21), (2.10), and (2.13), proving that (2.22) follows from (2.13) and (2.21). 

• The relations (2.21) and (2.22) imply 0 = PrL(I - Pd) = PrL{I - Ll*'L) = (Pr - PrLLI')L, so 
that n{L) C A'(Fr - PrLL1"). This proves (2.16), from which (2.13) follows. 

• The relation LL1" = LPJL.J/P,. = p.LPjL.jj^,. = L^jL^^Pr = Pr follows from (2.11), 
(2.23), (2.10), and (2.14), proving that (2.24) follows from (2.14) and (2.23). 

• The relations (2.23) and (2.24) imply 0 = (/ - Pr)LPd = {I - LLI*)LPd = L[Pd - L^LPj), so 
that TZ{Pd - L^LPd) C M{L) = {0}. This proves (2.19), from which (2.14) follows. 

The proof of Theorem 2 is complete. 
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B.    PROOF OF THEOREM 4 

Equations (2.34), (2.35), (2.39), and (2.40) can be rewritten as 

T{e)    =    Y^HJJTJ 

.7=0 

r6(6)   =  J2(JHNjr
bj 

.7=0 

06(e)    =    £VffMA 
j=0 

respectively, where b —> R or L, so that 

.7=0 
/] Hjk Tk HMJ -k& j - k 
k=0 

when taking b —> i? in (B.3), for example. This becomes 

cc      r J 
JQÄ = ^e' 

=o     u=o 
/ , Hjk.HM,j-k-TkQ J-k 

(B.l) 

(B.2) 

(B.3) 

(B.4) 

when using 

YH^Ajk    =   Y.HJkHjkAjk 

k=0 A—0 

J 

A-=0 

for generic .4;/,.. Similarly, 

nLT = Y> 
.k=o 

for 6 -» L in (B.3) and .4;A. -» ttLj-kTk in (B.5). For (B.4) and 6 -> R in (B.2), one gets 

TQR _ TR 5>' 
.7=0 

A/ 

.7=0 

Y HJkHM.j-k.Tkn
Rj -k     - ny Hy,T} 

\k=0 

' J 

Y HjkHMj-k.Tkn
Rj-.k\ - HyjT1 

41 

\A—o 

(B.5) 

(B.6) 
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E <j Y, HjkHMj-kTkn
Rj-k.    - HyjTPj 

\k=0 

M 

!>' ^Hj^nVt  -%/, 
0       L \A—0 

- E ■ 
j=M+l 

£ HjhHM,j-kTk^Rj -k    ~ HsjTHj 
\k=0 

M 

;=0        L\k-Ü / 

Max(A"..v+J) 

+    Y.    '' 
j=M+l 

Y HjkHM.j-k.Tkn
R
j-k  - HNjr

Rj 
k=0 / 

The step from the second to the third line uses HM,j-k = 1 for j < J\I. The last line results from 

j > Max(A\i\/ + .7) and 
0 < k < J 

-> 
77\ r,_z. = Oand 

ff.v; = 0 

lM.j-k 

J 

which follows from {j > Max (A', M + •/)}->■ {j > M + J and.; > A"}, 
so that Hxj = 0 and j - A' > i\7 + J - A-; but {0 < A- < J} -> {il/ + J - k > M}, so that j - A- > M 

and hence 77.^.,-/,: — 0. 

Finally, the previous result establishes the equivalence of 

E< 
./=o 

^77,,7^VA-)-^Y,r*, 
vfc=0 / 

and (2.41). Solving this for T0Q
R

; leads to (2.36). The proof of (2.37) and (2.42) from (B.6) is essentially 
the same except that QL^kTk. and T1, replace Tk&Rj-k and T^, respectively. 



Appendix C 

C.    PROOF OF THEOREM 5 

One can prove ÜR, = QL, for each j > 0 by induction, where the initial case for j = 0, QRo = Q
L

Q = A, 
follows directly from (2.45) and (2.46). The strategy is to first assume that 

fiV, = QRj_k (C.l) 

for 1 < k < min (J. j) and then prove that (2.45) and (2.46) subsequently lead to QR 7 = QL r Substituting 
(C.l) into the left-hand side of (2.46) with m —> j - k leads to 

QR 
J-A H0.j-kA - ]T Hj-k.cV j-(c+k)TrA. 

L=I 

Substituting this result into the right-hand side of (2.45) with m —> j leads to 

QRj    =   HojA-J2HJkATkü
R

J^k 

k=i 

J r ^ 
=    //o,-4 - Y, HjkATk 

A=i L (;=i 

J 

=    ifojA - ^ HjkHoj-kATkA 

j    J 

+E E flr
J^J--A,Mr,nL

j_(<+A.,rf A 
A=l(=1 

J 

=    HQJA - 22 HjcHoj-cAT(A 
(-1 

j    J 

+E £ HjcHj-ckATkQLj^+vTeA 
C=l A=l 

H0,j-kA - Y Hj-kjCl j-{c+k)T(A 

j 
H0jA - Y HJ£ 

i=i 

j 

HOJA-^HJ 
t=i 

^o.j-f-4 - 22 Hj-c,kATk$l j-(c+k) 
A=l 

j 

Ho.j-iA - Y Hj-c.k-ATkQ   (j-()-k 
k=i 

TiA 

T,A 

HojA-YHjfrXj-cTiA 
i=i 

j 

HojA-YHjc&j-cTtA 
(=i 

QL 

43 
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when using HjkH:i_kA = Hj(Hj_Lk (proof follows), nL
U-C)-k = ^R(j-()-k by (C.l); (2.45) with m -> j- 

(, QR,-t = QLj-[ by (C.l) since 1 < C < min(J, j) in the summation for C, and (2.46) with ??? -> j, re- 
spectively. The proof reduces to that of proving that HjkHj-kj: = HjcHj-c_k for 1 < A < m'm(J.j) and 

1 < ( < min(J.j). 

The general property 

for all integers i,j, and A, leads to 

One can prove 

H;±k ,;±A- = H, i 

;t-k.( = Hj.t + k 

= Hj- L.k- 

'jkHj, +A' = Hj. e+k 

(C.2) 

(C.3) 

as follows: one has either H3j+k = 0 or HjA+k = 1. An assumption of H:l,i+k = 0 implies that 
HjkHjx+k = 0. An assumption of Hj.i+k = 1 implies k + C < j, which in turn implies k < j because 
all values of ( are positive, so that H lk = 1 and HjkH:ix+k = 1. As ( and k have exactly the same range of 
values, the proof of the relation 

HltHu(+k = Hu+k- (C4) 

is essentially the same as that of (C.3). In fact, (C.4) is just a relabeling of (C.3). Substitute Hj-c.u from 
(C.2) into the left-hand side of (C.4), substitute Hj_kj from (C.2) into the left-hand side of (C.3), and equate 
the results (the right-hand sides of each are equal) to prove HlkHj_kx = Hj(Hj-u<. 



Appendix D 

D.    PROOF OF THEOREMS 6 and 7 

Proof of Theorem 6: The proof of (3.29) is given by 

•p-in 

v-l (   hrm      0   \   /   [$r]m   \ 
[a      0 ){  [$,.]s  ; 

=      V-l(     i^]m     \ 

_      -p-1 f   [®r]m   \ 
{    [*r],    J 

=      $r, 

using (3.35), (3.32), -. ->• Q in (3.33), (3.31), (3.34), (3.31) again, and (3.32) again, respectively. The 
preliminary result 

■p-ifiloV   =    V~x |     ,mra     ,ms   W    mm |T> 

_      -p-l /     ^mm + L"msP      0    \-p 

V    £*m + Lss3      0 j ' 

       -p —1 I        '-•■mm    \   L'msP "    \ .p 

\   Cl{^mm + Lmsß]      0   j 

y   Q'Lrerf      0   J 

v-l(   Imm      0   \(   Lred      0   \ 

^    a       °/V°       ° / 

follows from using (3.28) and - —>• ,i in (3.33), L.s„, + Lssii = a[Lmm + Z„iS J] from (3.36), (3.38), ~, —>■ a 
in (3.33), and (3.40), respectively. Substituting LPd = V^LVV^U^V = V^LIljV from (3.27) and 
(3.37) into the previous result leads to 

LPd = V~lnoQV. (D.l) 

45 
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Matrix multiplying (D.l) from the left by Pr and substituting Prp-lno = P'lnoPP~lUa = T,_1no
2 = 

P-1no, from (3.35) into the result leads to LPd = PrLPd, which proves (2.23). This gives LPd = Lfjj, 
when using (2.10), which combines with (D.l) to give 

PJJ = p~1n0ev. (D.2) 

The Lf fj
1 of (3.39) is proven to be an outer generalized inverse of Le// from (D.2) by Lejj LfjjLejj = 

T,_10/noOÖ/^> = P-^'OO'P = P-lQ'P = Lefj1, where G'll, = 0Z is easily verified from - ->■ a 
in (3.33) and (3.41). The relation (2.13) is proven by PdL(:U

]L,u = p-^l^Yl^P = V^TlßQ'Qr = 
V-1U3IloV = P-1Y\3P = Pd when using G7no = GJ again; G;G = n0 from ~ ->■ 0 in (3.33), and 
n.3n0 = Us. The relation (2.14) follows from Le//Le// = p-lTlo00lP = P'^^QP = p-lYl0P = 
Pr. Finally, using 9jno = G7 again in L1* = PdLeJJ

rPr = P^UjO^^P proves (3.42). 

Proof of Theorem 7: Matrix multiplying (D. 1) on the right by V    ([$</] „-,    0)   , substituting for 0 from 
(3.40), substituting for PdP~l = P~lU3 from (3.37), and then substituting $rf from (3.45) gives 

V^UJ   Lred[$d]m   \      =      L<p-lU J   M»    \ 

L<5> d- 

Right matrix multiplying (3.44) by ([<!>,-],„      0) gives 

p_1n,:,   =  $,( [$,.],„_1   0 

when using ([$,.]„/ 0)T([$>r]m~l 0) = n0 for - ->- 0 in (3.33), and non0 = U0. Substituting this for 
P~l n,, into the previous result and then matrix multiplying on the left by $,^ leads to 

=    (<P.Mr)[$r}m~hr(di®d].in. (D.3) 

Inverting (D.3) and matrix multiplying the result on the left by $r/ gives 

=      V-'Ujt   7"0'"   y^-'^rU^Mr)-1 

=   P-Ini^0
r'   [jW'fV   2)([*o"')($,t*"rl 

L/;u/,$,($,t$,.)-'. 
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when using 

^[^„r1 = v%J /n
0" 

from (3.45), and then (3.41), i —>■ o in (3.33), (3.42), and (3.44), respectively. Matrix multiplying on the 
right by <£>,t and then substituting for L1

rb from (3.14) leads to (3.46). 



Appendix E 

E.     PROOF OF THEOREM 9 

The proof consists of the following two lemmas: Lemma 4 applies directly to the theorem with no 
change, and Lemma 5 applies with r —> ti and Qj —> tyj. 
Lemma 4 Under the hypothesis of Theorem 9, applying the biscale perturbation of (4.3) to (4.8) leads to 
(2.34) for (4.9) and (4.10). 

Proof: Substituting (4.8) into (4.3) gives 

TU., J^Cjliuo + ed/dhy 
,/=o 

J 

3=0 

J 

J 

£«* 
J 

.-k   J 

A—o      \      / dhh 

.k=0 

J 

i . V-* dk 

T,HM l )(^oy-k£3 
j=0 

J 

dk 

dh1 

Eli a^y-% 
j=k du 

dhk 
k=0 

= hkTk 
k=o 

when using a binomial expansion (exact because it is finite), the definition (2.38) of H3k twice, (4.10), and 
(4.9), respectively. 

Lemma 5 If Qj satisfies (2.61) and 

T, 

dk 

for 0 < k < DC for each j of 0 < j < J, then 

T,  

ÖT 

.A-    J 

fi; 

*n; 

_A- r> 

•' C)TJ 

-   dk 

?ör*' 
0 

(E.l) 

(E.2) 

(E.3) 

(E.4) 

49 



50 L.D. Flippen, Jr. 

for 0 < k < oc for each j of 0 < j < M, where the Q, component operators are recursively given by 

.7 

Qj = Hojfö* - J2 Hjkfö'nQj-k. (E.5) 
A—1 

Proof: Equation (E.l) for j = 0 gives 20 = f0 and T0~
] = T"1. Operating on both sides of (E.2) with 

j — 0 by TQ 
l leads to 

which shows that (E.4) is true for j = 0 when using Q0 = 'i0
-1 from (E.5). For j = 0, equation (2.61) gives 

Q0 = TQ'
1
 , which combines with QQ = f0

-1 and To-1 = TQ
1
 to give Q0 = Q0, in agreement with (E.3) for 

j = 0. Equation (E.3) is also true for j = 0. To prove (E.4) by induction, take j -> m in (E.5) for m > 0 
and operate from the left by the linear operator d1''/<9r  to get 

ÖTK ÖTk j±[ 

A—1 ÜT 

=      -E^A-fo-1^.^«,,,.,] 
A=l dT 

1/2 Hmk T0     Tj- il m _ A J —J 

= am 

k=l 

Qk 

I" 
di 

drk 

when using (E.6), (E.2) for j = k, (E.4) for all j < m - 1, and j -» m in (E.5) for m > 0 again, respectively. 
Equation (E.4) is proven by induction if the Qj component operators are given by (E.5). To prove (E.3) by 
induction, assume that (E.3) is true for all j <???-! (proven for j = 0) for some finite m > 0. Equation 
(2.61) and ??? > 0 give 

j 

A=l 

J ä      d
m~k 

=    -]T HmkTü-
lTkQ.m-k .-   m_k 

3 ~ dk -      dm~k' 
=      ~Y< HrnkTu^Tk—jSlm-l, A. 

=      ~J2H'^T0~1fk^,r,-k^W 
A=l ' 

= -Eä,,,,^-1^^,,.,]^- 
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when using (E.3) for all j < m - 1, (E.l), (E.4) for all j < m - 1, T0
_1 = f0

_1, and (E.5) for m > 0, 
respectively. Equation (E.3) is also proven by induction if the Qj component operators are given by (E.5). 


